On a new formula for the Gorenstein dimension
نویسندگان
چکیده
منابع مشابه
A Bass formula for Gorenstein injective dimension
In this paper a generalized version of the Bass formula is proved for finitely generated modules of finite Gorenstein injective dimension over a commutative noetherian ring.
متن کاملGorenstein injective dimension, Bass formula and Gorenstein rings
Let (R,m, k) be a noetherian local ring. It is well-known that R is regular if and only if the injective dimension of k is finite. In this paper it is shown that R is Gorenstein if and only if the Gorenstein injective dimension of k is finite. On the other hand a generalized version of the so-called Bass formula is proved for finitely generated modules of finite Gorenstein injective dimension. ...
متن کاملA Note on Gorenstein Flat Dimension
Unlike the Gorenstein projective and injective dimensions, the majority of results on the Gorenstein flat dimension have been established only over Noetherian (or coherent) rings. Naturally, one would like to generalize these results to any associative ring. In this direction, we show that the Gorenstein flat dimension is a refinement of the classical flat dimension over any ring; and we invest...
متن کاملGorenstein Dimension of Modules
R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.02.013